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A least-squares method is used to determine the heat transfer coefficient H of a solid copper bar in air
at constant temperature. For this purpose, twelve steady states and their corresponding cooling curves
were measured with temperature excesses of the metal over the surrounding air in the range of 11-
74oC and were compared to those calculated using a mathematical model to solve the equation for the
heat flow in the bar. The model reduces an experimental double exponential law to an overall single
exponential and gives similar behavior, within 10% of statistical uncertainty, for H in the steady state
and in cooling. The values obtained in this study are in qualitative agreement with the values given in
the literature under similar experimental conditions, but there it is not specified how they are obtained
in solids.

1. Introduction. Unlike the thermal conductivity K, general methods are lacking to determine the  heat
transfer coefficient H accurately. This is because H depends on many factors: the type of flow (laminar or
turbulent), the mechanism of the heat transfer (forced or natural convection), the nature and geometry of the
body, etc. Only for flow over bodies having a simple geometry, such as a flat plate, or flow inside a circular
tube can the overall H be calculated more or less accurately (Dittus–Boelter equation) in terms of the Nusselt
number [1]. But for flow over bodies of complex configuration or solids of different nature and shape the task
of evaluating the coefficient H becomes too complicated and an experimental approach must be used to deter-
mine it. One knows a priori that a wide range of values of H may be found for different applications. A
comparison, for example, of film condensation theory with experiments has shown that the measured heat
transfer coefficient is about 20% higher than the theory suggests, and consequently appropriate corrections
must be taken into account in the theory [2].

However, in recent years, numerical methods and computer simulation have become the usual tools that
enable one to approach many of the problems related to heat transfer and the thermal coefficients involved.
Some of the most significant and recent examples are Ko and Bert’s method of calculating the exact solution
of the two-dimensional steady-state conduction problem of a rectangular region with convective boundary con-
ditions in both directions [3], Kamiuto’s two-parameter formula for predicting the total effective thermal con-
ductivities of alumina-silica fiber insulations with an accuracy of ±30% [4], Spitzer’s least-squares method used
to determine the heat flux from solidifying steel into a water-cooled steel belt [5], Viswanath et al.’s general
method for obtaining polynomials from experimental data [6], Nance et al.’s work that describes parallel appli-
cation of direct simulation (the Monte Carlo method) to three-dimensional flow over a flat plate [7], etc.

In this paper we will try to give a more general method to obtain the coefficient H for solids by meas-
urements of several steady states and their corresponding cooling by using a least-squares method to find the
best governing equations for the experimental data. As we will show, even for the very simple geometric ar-
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rangement of a metallic copper rod, calculation of the heat transfer coefficient presents practical and theoretical
difficulties. One of the reasons resides in the nature of the heat-flow differential equation itself, which has
more complicated solutions than one would have expected a priori. Section 2 briefly describes the theoretical
model and its solution for one-dimensional heat flow in a solid. Section 3 sets up our generalized solution by
fitting the experimental data with the best governing equation describing the temperature distribution in a spe-
cific solid, and also describes the methodology and the experimental procedure. Section 4 gives results for the
steady state and cooling, leading to the discussion and conclusions in Sec. 5.

2. Mathematical Model. The mathematical model to predict the behavior of the heat transfer coeffi-
cient in a solid is not as easy to study as one might expect. In principle, it is based on Newton’s cooling law,
which states that a solid at a higher temperature than the surroundings transfers heat across its surface at a rate
proportional to the temperature difference between the solid and the medium. This constant cooling ratio is H.
Inclusion of this concept in the differential equation for the heat flow in a thin bar gives [8]

∂T

∂t
 = 

K

ρc
 
∂2T

∂x2  − 
Hp

ρcw
 (T − T0) . (1)

The coefficient H can be obtained on the basis of Eq. (1) either from the steady-state solution, (∂T ⁄ ∂t) = 0, as

d2Ti

dx2  − m2Ti = 0 ,   Ti = T1 exp (− mx) , (2)

where m2 = Hp ⁄ Kw, or from the cooling solution, (∂2T ⁄ ∂x2) = 0, as

dT′

dt
 + m′T′ = 0 ,   T′ = Ti exp (− m′t) , (3)

where m′ = Hp ⁄ ρcw.
Here T is the temperature excess over the surroundings, T1 is the highest temperature in the bar, and

T′ is the instantaneous temperature at time t during the cooling at point i of the bar, which started from the
steady state at temperature Ti.

If we consider now the reasonable hypothesis that the heat transfer coefficient is independent of the
kind of regime established in the solid, i.e., whether steady state or cooling, it is possible to eliminate H from
the definitions of m and m′ in Eqs. (2) and (3). One obtains the theoretical relation between the exponents

m′ = 
K
ρc

 m2 , (4)

which should be very easy to check by study of the steady state and the corresponding cooling curves. Thus,
whether Eq. (4) is verified or not depends on the independence or dependence of H on the geometric and/or
thermodynamic variables. A problem arises when the actual experimental conditions start to differ from New-
ton’s conditions [8]: if they are close, one expects a constant-like behavior for H, but if they are far apart, one
expects that the coefficient H will no longer be constant and an appropriate functional equation ought to be
sought.

The fact that experimentally the steady state and cooling actually follow exponential laws is an imme-
diate consequence of H being constant, since if H depends on any other factor such as t, x, and/or T, then extra
terms must be added to Eq. (1). The second- and first-order differential equations (Eqs. (2) and (3), respec-
tively) are then no longer valid, and neither are their respective exponential solutions for H. In other words,
one could not predict an a priori behavior for the coefficient H because of the strong dependence on these
variables. Instead it is necessary to ascertain, in so far as it is possible, the behavior of H for cases that are
much easier to study. However, previous results have shown that even cases close to the simplest conditions
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lead to different conclusions: while Eq. (4) is verified (within 1.2% of statistical uncertainty) in an iron bar for
a temperature range of 11-61oC over the surroundings [9], it is not verified either for an aluminium bar over a
range of 20-74oC [10] or for a transparent plastic (polymethyl methacrylate) bar over the same range of tem-
peratures [11] (both with a statistical uncertainty of 32%). Taking into account these contrasting results, it was
therefore decided to study the range of validity of Eq. (4) for good conducting materials, such as copper, in the
hope that a theory predicting the value of the heat transfer coefficient could be developed on the basis of
finding the best governing equation during the steady state and cooling and then relating the parameters of the
fit to thermal coefficients such as K and H.

3. The Solution Proposed and the Experimental Procedure. Since an earlier experiment [12] had
shown that the single exponential solutions given by Eqs. (2) and (3) were not good at describing the heat
transfer coefficient, it was decided to search for the best governing equations by fitting the experimental data
(in the steady state and cooling) to pre-chosen functions and calculating the coefficients by a least-squares
method [13, 14] using the STEPIT statistical package, which uses matrix inversion and automatic step size
adjustment [15]. These functions must be chosen from a range of possible solutions. Taking into account the
nature of the material, previous results [9-12], and the usual methodology in this kind of study [5, 6], the
expressions chosen to fit the experimental data were double exponents for the steady state and cooling:

Ti = a1 exp (− m1x) + a2 exp (− m2x) , (5)

T′ = a1
′  exp (− m1

′ t) + a2
′  exp (− m2

′ t) , (6)

respectively.
Since the experimental temperature regime used was not very much above the ambient temperature,

one can still follow the simple model of heat flow described by Eq. (1) with its solutions being single expo-
nents. If the purpose is to identify the double exponential equation that was obtained as the best governing
equation for the experimental data with the theoretical single exponential solution described by Eqs. (2) and
(3), one must reduce the double exponent to a single exponent in some way. Then, if we consider that Eqs. (2)
and (3) can be satisfied and the double exponential law is the best governing equation for the steady state and
cooling, it should be a reasonable hypothesis to consider that an overall exponential coefficient can be obtained
for the steady state (m in Eq. (2)) and cooling (m′ in Eq. (3)) in terms of the combined partial coefficients
m1 and m2 in Eq. (5), and m1

′  and m2
′  in Eq. (6), thus:

m = − 
1
x

 ln 


1
T1

 (a1 exp (− m1x) + a2 exp (− m2x))

 , (7)

m′ = − 
1
t
 ln 



1
Ti

 (a1
′  exp (− m1

′ t) + a2
′  exp (− m2

′ t))

 . (8)

The overall coefficient H can then be obtained from Eqs. (2) and (3) and their comparison will be a
direct check of satisfiability of Eq. (4). Thus, Eqs. (7) and (8) are the equations that represent the model we
propose for obtaining the heat transfer coefficient.

Table 1 lists the physical properties [16] and geometric characteristics (with their experimental errors)
of the copper bar. The bar was held in two wooden supports, isolated by asbestos cord, and heated electrically
at one end by a resistive coil connected to an ac variable transformer. The experimental data were obtained
from thermocouples (with an accuracy of ±0.1oC) placed in ten holes drilled perpendicular into the bar from a
generatrix to the axis, and the temperatures were recorded automatically over a sufficiently long period of time.
The first thermocouple was at 7 cm from the heated end and was taken as the origin for the distances. Table
2 lists the distances (with an uncertainty of ±0.1 cm) of the rest of the thermocouples with respect to the first,
and Table 3 lists the temperatures in the first thermocouple for every steady state studied, which are also the
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starting temperatures for the corresponding cooling cases. Twelve steady-state cases were studied with an over-
all range of temperature excess over the temperature of the surroundings (63.2oC) from 77.4oC in case I to
14.2oC in case XII. These steady-state cases and their corresponding cooling behaviors were then used to ob-
tain the best governing equations and hopefully shed some light on the behavior of the heat transfer coefficient.

4. Results. Prior to further calculations one must know which kind of differential equation for the heat
flow is to be used. First, since the cylinder has a small cross section compared to its length (see Table 1), the
problem is one of linear flow in which the temperature is specified by the time and the distance x measured
along the rod, as given by Eq. (1). Second, and much more importantly, Eq. (3) is satisfied only when a
lumped-system analysis is assumed, i.e., when the Biot number Bi = HL ⁄ K is less than 0.1. If Bi > 0.1, then
Eq. (3) is no longer valid and the finite-difference representation of the time-dependent heat conduction equa-
tion must be applied to the experimental data [17]. As we did not know a priori the behavior of H, these
finite-difference equations were applied to our experimental data. The results, however, were not consistent
with those expected for non-lumped systems. The lumped-system analysis was therefore assumed and Eq. (3)
was considered to be valid for our study.

4.1. Steady state. Table 4 shows results of fitting the steady-state experimental data to a double expo-
nential law as in Eq. (5). The standard deviation is denoted by σ and the last column, sqdif, is the sum of the

squares of the differences between the experimental data Tie and the theoretical values Tit, i.e. Σ
i

N

  (Tie − Tit)
2.

This quantity is a measure of the goodness of the fit. The results are both clear and interesting: clear because
the sqdif values are so small that one can indeed conclude that the best governing equation for the steady state
in the copper bar is Eq. (5) (comparing the experimental values  for the temperature of the first thermocouple
at x = 0 (Table 3) with the theoretical values (a1 + a2) in Table 4, one can see how good the fit is); interesting,
because of the importance of the physical meaning of the results, since there were three classes of behavior.
Cases I–III and X show an m2 value that is so small that the second exponent is reduced to the constant a2.
This was the behavior found for an aluminium bar in all the cases studied [10]. Case XII shows two equal
exponents, so that the double exponential expression reduces to a single exponent with (a1+ a2) very close to
the value of T1 of Table 3. This was the behavior found for an iron bar, also for all the cases studied [9]. The

TABLE 1. Physical and Geometric Characteristics of the Copper Bar at 20oC with Their Experimental Errors

ρ = (8.933 ± 0.001)⋅103 kg⋅m−3 (at 25oC)
c = (3.87 ± 0.01)⋅102 J⋅kg−1⋅K−1 (at 25oC) 
K = (3.83 ± 0.01)⋅102 J⋅sec−1⋅m−1⋅K−1 (at 50oC) 
k = (1.108 ± 0.006)⋅10−4 m2⋅sec−1

L = 0.420 ± 0.001 m
d = (2.500 ± 0.005)⋅10−2 m 
p  = (7.85 ± 0.02)⋅10−2 m
w = (4.91 ± 0.02)⋅10−4 m2

TABLE 2.  Distance of the Thermocouples with Respect to the First, Which Is Taken as the Coordinate Origin

Points x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Distance (±0.1 cm) 0.0 3.6 7.1 10.6 14.0 17.5 20.9 24.4 27.9 31.4

TABLE 3.The Starting Experimental Conditions T1, the Temperature at x1 = 0, for the Twelve Steady States and
Coolings Studied 

Cases
studied I II III IV V VI VII VIII IX X XI XII

T1 (±0.2oC) 77.4 70.2 66.9 57.6 51.1 44.2 40.4 34.8 30.8 24.1 20.4 14.2

1326



rest the cases, IV–IX and XI, present a second exponent that is small relative to the first exponent. This is a
behavior that had not been found in previous steady-state experiments, even though it is well-known in cooling
[9, 12].

The calculated coefficients in Table 4 were used in Eq. (7) to obtain an overall m value to calculate H
from Eq. (2). Figure 1 plots those H values vs x. It is of interest to note that the curves are almost interwoven,
not obeying the common rule "upper lines, upper temperatures," even though there is a natural tendency toward
lower curves at lower temperatures. The curves corresponding to cases IX, XI and XII are completely indistin-
guishable. Figure 2 shows the mean values for the twelve cases studied at each point of the bar and their
standard deviation. The final H curve obeys a second-order polynomial in x, as shown in the figure, with a
very high accuracy of sqdif = 0.026.

4.2. Cooling. Once the steady states were reached, cooling was initiated by switching off the electric
heater at the end of the bar. There are twelve different coolings at the ten points of the bar. Since this involves
a great quantity of experimental data, three points of the bar were chosen for better comprehension of the
results: x1 = 0, x2 = 0.036 m, and x5 = 0.14 m. All the cooling measurements started from the experimental

TABLE 4. Parameters for the Fit of the Experimental Steady-State Data to the Double Exponential Law of Eq. (5),
Units of a1 and a2 Are (oC) and Units of m1 and m2 Are (m− 1)

Cases a1 ± σ m1 ± σ a2 ± σ m2 ± σ sqdif

I 24.39 ± 0.04 5.74 ± 0.04 53.1 ± 0.6 < 10−6 0.26

II 22.36 ± 0.08 5.82 ± 0.05 47.8 ± 0.3 " 0.11

III 421.28 ± 0.04 5.754 ± 0.04 45.7 ± 0.6 " 0.14

IV 19.80 ± 0.06 6.10 ± 0.05 41.7 ± 0.4 0.09 ± 0.03 0.14

V 14.42 ± 0.06 6.17 ± 0.05 36.8 ± 0.4 0.09 ± 0.03 0.15

VI 11.04 ± 0.05 6.61 ± 0.05 33.2 ± 0.4 0.14 ± 0.03 0.09

VII 11.40 ± 0.05 5.15 ± 0.05 29.2 ± 0.4 0.06 ± 0.03 0.17

VIII 8.61 ± 0.05 6.62 ± 0.05 26.2 ± 0.3 0.15 ± 0.03 0.04

IX 8.91 ± 0.05 4.96 ± 0.04 22.0 ± 0.3 0.04 ± 0.03 0.10

X 7.00 ± 0.04 5.65 ± 0.04 17.2 ± 0.3 <  10−6 0.04

XI 4.79 ± 0.04 5.44 ± 0.04 15.7 ± 0.3 0.15 ± 0.03 0.05 

XII 5.74 ± 0.04 0.84 ± 0.04 8.2 ±  0.4 0.85 ± 0.04 0.33

Fig. 1. Heat transfer coefficient in the steady state for the cases studied.

Fig. 2. The same as Fig. 1, but taking the mean value at each point, with
its standard error and the best fit to a second-order polynomial.

1327



values of T1 listed in Table 3 and the fits were performed with the same mathematical expressions as for the
steady state, i.e., Eqs. (6) and (8) in this case.

Data were logged every 300 sec up to 12,000 sec (with an experimental error for the measurements of
1 sec), depending on the case, until the temperature had dropped to 1.0-1.7oC over the temperature of the sur-
roundings. As an example, Table 5 lists the results of the fit to Eq. (6) for the double exponential law for the
first hole at x1 = 0, where the temperature excess was highest. Two clear classes of behavior can be seen
separating cases I–X and XI, XII. The exponents in cases I–X are qualitatively the same, but quantitatively
different: both can be considered as fluctuating around their mean values, but while m1

′  is smaller and mainly
constant with small fluctuations, m2

′ , on average, is about two and a half times greater than the corresponding
m1

′ , and its fluctuations are considerably smaller. Cases XI, XII behave quite differently because both reduce to
a single exponent, albeit in different ways. Case XI has the same exponents with different coefficients whose
sum gives the same value as the single exponent. By contrast, case XII has two quite different exponents: the
first is about six times greater than the second. This means a very sharp decay of the first exponent with re-
spect to the second, and since the first coefficient a1

′  is much smaller than the second coefficient a2
′ , one can

TABLE 5. Values of the Fit of the Experimental Data to the Double Exponential Law of Eq. (6) for the Cooling
of the First Point of the Bar, Units of a1′  and a2′  Are (oC), and Units of m1′  and m2′  Are (sec−1)

Cases a1′  + σ (m1′  ± σ)⋅10−3 a2′  ± σ (m2′  ± σ)⋅10−3 sqdif

I 50.0 ±  1.0 0.30 ±  0.008 32.895 ±  0.003 0.583 ±  0.003 0.43

II 46.2 ±  0.9 0.335 ±  0.009 26.984 ±  0.004 0.800 ±  0.004 0.18

III 48.1 ±  0.9 0.342 ±  0.008 22.422 ±  0.004 0.883 ±  0.004 0.09

IV 39.2 ±  0.9 0.33 ±  0.01 20.422 ±  0.005 0.824 ±  0.005 0.16

V 38.2 ±  0.9 0.34 ±  0.01 15.194 ±  0.005 0.899 ±  0.005 0.18

VI 30.4 ±  1.1 0.30 ±  0.01 16.846 ±  0.005 0.553 ±  0.005 0.16

VII 30.0 ± 1.1 0.31 ±  0.01 15.142 ±  0.006 0.554 ±  0.005 0.59

VIII 28.6 ±  0.9 0.34 ±  0.01 7.582 ±  0.007 1.019 ±  0.007 0.05

IX 17.9 ±  3.0 0.26 ±  0.06 16.134 ±  0.008 0.534 ±  0.008 0.20

X 17.9 ±  1.0 0.32 ±  0.02 7.75 ±  0.01 0.80 ±  0.01 0.03

XI 13.7 ±  4.4 0.35 ±  0.2 8.38 ±  0.02 0.36 ±  0.02 0.10

XII 1.7 ±  1.8 2.2 ±  0.2 13.3 ±  0.2 0.37 ±  0.02 0.03

Fig. 3. Heat transfer coefficient during cooling for the cases studied at x
= 0.0 m.
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conclude that the first exponent can be considered as a "perturbation" of the second exponent, which truly
governs the time decay of the temperature.

Figure 3 shows the time behavior of H at x = 0, when the values of m1
′  and m2

′  of Table 5 were taken
to obtain the overall m′ of Eq. (8) and then Eq. (3). Figures 4 and 5 correspond to the same procedure, but for
x = 0.036 and x = 0.14, where the corresponding tables for the coefficients m1

′  and m2
′  have been omitted for

brevity. As one can see from the figures, three important things are found. First, as expected from the theory
[18], in all the cases there exists unsteady cooling, associated with the thermal inertia of the heater and the bar,
from the beginning of the cooling and lasting about 1/6 of the total cooling time, some 2000 sec, being sharper
for the farthest point in the bar and smoother for the inner points. Second, the curves interweave, as they did
for the steady state, indicating a tendency toward a common behavior. Third, and more importantly, all the
values tend to almost the same constant value, even though there is a weak tendency toward lower values at
inner points in the bar. This can be seen better in Fig. 6, where the mean values (and their standard deviation)
of all the coolings at several points along the bar have been plotted, avoiding, as usual, the first part corre-
sponding to the unsteady cooling regime. The dotted line is the mean value for the three cases. It is almost
constant, since the slope of the best fit, given in the figure, is very close to zero with sqdif = 0.005.

Fig. 4. The same as Fig. 3, but for x = 0.036 m.

Fig. 5. The same as Fig. 3, but for x = 0.14 m.

Fig. 6. The same as Figs. 3-5, but taking the mean value and its standard
deviation, and avoiding the unsteady cooling. The dashed line is the mean
of the three values at each time.
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5. Discussion and Conclusions. We used a least-squares method [15] to fit the experimental results
from the steady state and cooling to the best governing equation for the temperature distribution in these two
regimes. The pre-chosen analytical functions were exponents and polynomials of n-th-order. However, the
least-squares method shows that the double exponential expressions (Eqs. (5) and (6)) can be considered to be
the best fit for the steady state and cooling, respectively, in the copper bar, since the alternative fit to an n-th-
order polynomial (not seen here for simplicity) was, for all the cases studied, very poor. The results obtained
with a fourth-order polynomial were unsatisfactory for the steady states and were worse for the cooling, with
a sqdif value ranging between 2.0 and 3.5 for cases I-V. Only a sixth-order polynomial gave an acceptable fit.
However, it is still worse than was obtained for the double exponential law given in Table 5, especially for
cases I–V.

Associated with this application of regression to our experimental data, there arises a very important
and interesting situation: the way in which the experimental double exponential law can be related to the theo-
retical single exponential law given by Eqs. (2) and (3). This led us to propose our approximate solution in
which we consider the theoretical single exponent as a generalized linear combination of two different expo-
nents given by Eqs. (7) and (8), where the coefficients are obtained directly from the experimental data, Tables
4 and 5.

Applying this model to the heat transfer coefficient calculations, one can draw the following conclu-
sions from our results, summarized in Figs. 2 and 6:

a) The Newton cooling law assumes a constant value for H, independent of the temperature and time.
However, in the range of temperatures studied here for the steady state and cooling, we found two different
behaviors for the two regimes: while for the cooling regime one can consider an almost constant value for H,
for the steady-state regime H was found to decay with distance according to a second-order polynomial.

b) Comparing the heat transfer coefficients obtained from the steady state and cooling, one can see that
in the limiting case for the initial conditions (x = 0 and t = 0) these two values of H are the same within a
10% uncertainty, as can be noted in Figs. 2 and 6, in which H(x = 0) = 7.00 and H(t = 0) = 7.88. The same
ratio is found for the overall exponents in Eq. (4).

c) The results obtained in this study improve considerably results for similar previous experiments on
iron, aluminium, and plastic [9, 12], since in the present study the model described by Eqs. (7) and (8) was
used. The values found here for H are in qualitative agreement with experiments with similar experimental
conditions where the coefficient H is not calculated but is taken as given and it is not stated how it is obtained
[17].

Finally, this work is one of the very few devoted to obtaining the qualitative behavior of the heat trans-
fer coefficient for a solid, since it is striking in the literature on this topic that there is a scarcity of methods
for obtaining H experimentally or analytically, even though there appear from time to time notes [19] or com-
ments [20] about the peculiarities and difficulties in determining this coefficient.

This work has been supported in part by the Spanish DGICYT, project No. PB95-0254.

NOTATION

c, specific heat; H, heat transfer coefficient; K, thermal conductivity; p, perimeter; t, time; T, tempera-
ture; T0, constant temperature of the medium; w, cross section; x, coordinate in the axial direction; sqdif, sum
of the squares of the differences between the experimental data and the theoretical values; κ = K ⁄ ρc, thermal
diffusivity; ρ, density; σ, standard deviation.
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